Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Am Chem Soc ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652033

RESUMO

Lipid rafts, which are dynamic nanodomains in the plasma membrane, play a crucial role in intermembrane processes by clustering together and growing in size within the plane of the membrane while also aligning with each other across different membranes. However, the physical origin of layer by layer alignment of lipid rafts remains to be elucidated. Here, by using fluorescence imaging and synchrotron X-ray reflectivity in a phase-separated multilayer system, we find that the alignment of raft-mimicking Lo domains is regulated by the distance between bilayers. Molecular dynamics simulations reveal that the aligned state is energetically preferred when the intermembrane distance is small due to its ability to minimize the volume of surface water, which has fewer water hydrogen bonds (HBs) compared to bulk water. Our results suggest that water HB-driven alignment of lipid rafts plays a role as a precursor of intermembrane processes such as cell-cell fusion, virus entry, and signaling.

2.
Genome Med ; 16(1): 20, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297291

RESUMO

BACKGROUND: Recent studies using single-cell transcriptomic analysis have reported several distinct clusters of neoplastic epithelial cells and cancer-associated fibroblasts in the pancreatic cancer tumor microenvironment. However, their molecular characteristics and biological significance have not been clearly elucidated due to intra- and inter-tumoral heterogeneity. METHODS: We performed single-cell RNA sequencing using enriched non-immune cell populations from 17 pancreatic tumor tissues (16 pancreatic cancer and one high-grade dysplasia) and generated paired spatial transcriptomic data from seven patient samples. RESULTS: We identified five distinct functional subclusters of pancreatic cancer cells and six distinct cancer-associated fibroblast subclusters. We deeply profiled their characteristics, and we found that these subclusters successfully deconvoluted most of the features suggested in bulk transcriptome analysis of pancreatic cancer. Among those subclusters, we identified a novel cancer cell subcluster, Ep_VGLL1, showing intermediate characteristics between the extremities of basal-like and classical dichotomy, despite its prognostic value. Molecular features of Ep_VGLL1 suggest its transitional properties between basal-like and classical subtypes, which is supported by spatial transcriptomic data. CONCLUSIONS: This integrative analysis not only provides a comprehensive landscape of pancreatic cancer and fibroblast population, but also suggests a novel insight to the dynamic states of pancreatic cancer cells and unveils potential therapeutic targets.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Transcriptoma , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Perfilação da Expressão Gênica , Prognóstico , Microambiente Tumoral/genética , Análise de Célula Única , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
3.
Nat Commun ; 14(1): 3547, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321992

RESUMO

Autism spectrum disorders (ASD) represent neurodevelopmental disorders characterized by social deficits, repetitive behaviors, and various comorbidities, including epilepsy. ANK2, which encodes a neuronal scaffolding protein, is frequently mutated in ASD, but its in vivo functions and disease-related mechanisms are largely unknown. Here, we report that mice with Ank2 knockout restricted to cortical and hippocampal excitatory neurons (Ank2-cKO mice) show ASD-related behavioral abnormalities and juvenile seizure-related death. Ank2-cKO cortical neurons show abnormally increased excitability and firing rate. These changes accompanied decreases in the total level and function of the Kv7.2/KCNQ2 and Kv7.3/KCNQ3 potassium channels and the density of these channels in the enlengthened axon initial segment. Importantly, the Kv7 agonist, retigabine, rescued neuronal excitability, juvenile seizure-related death, and hyperactivity in Ank2-cKO mice. These results suggest that Ank2 regulates neuronal excitability by regulating the length of and Kv7 density in the AIS and that Kv7 channelopathy is involved in Ank2-related brain dysfunctions.


Assuntos
Epilepsia , Canais de Potássio KCNQ , Animais , Camundongos , Epilepsia/metabolismo , Canais de Potássio KCNQ/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Neurônios/metabolismo , Convulsões/genética , Convulsões/metabolismo
6.
Mol Psychiatry ; 27(11): 4680-4694, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35840799

RESUMO

Three-dimensional chromatin interactions regulate gene expressions. The significance of de novo mutations (DNMs) in chromatin interactions remains poorly understood for autism spectrum disorder (ASD). We generated 813 whole-genome sequences from 242 Korean simplex families to detect DNMs, and identified target genes which were putatively affected by non-coding DNMs in chromatin interactions. Non-coding DNMs in chromatin interactions were significantly involved in transcriptional dysregulations related to ASD risk. Correspondingly, target genes showed spatiotemporal expressions relevant to ASD in developing brains and enrichment in biological pathways implicated in ASD, such as histone modification. Regarding clinical features of ASD, non-coding DNMs in chromatin interactions particularly contributed to low intelligence quotient levels in ASD probands. We further validated our findings using two replication cohorts, Simons Simplex Collection (SSC) and MSSNG, and showed the consistent enrichment of non-coding DNM-disrupted chromatin interactions in ASD probands. Generating human induced pluripotent stem cells in two ASD families, we were able to demonstrate that non-coding DNMs in chromatin interactions alter the expression of target genes at the stage of early neural development. Taken together, our findings indicate that non-coding DNMs in ASD probands lead to early neurodevelopmental disruption implicated in ASD risk via chromatin interactions.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Humanos , Transtorno do Espectro Autista/genética , Cromatina/genética , Mutação/genética , Predisposição Genética para Doença/genética
7.
J Cell Biol ; 221(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35819332

RESUMO

IRSp53 (aka BAIAP2) is a scaffold protein that couples membranes with the cytoskeleton in actin-filled protrusions such as filopodia and lamellipodia. The protein is abundantly expressed in excitatory synapses and is essential for synapse development and synaptic plasticity, although with poorly understood mechanisms. Here we show that specific multivalent interactions between IRSp53 and its binding partners PSD-95 or Shank3 drive phase separation of the complexes in solution. IRSp53 can be enriched to the reconstituted excitatory PSD (ePSD) condensates via bridging to the core and deeper layers of ePSD. Overexpression of a mutant defective in the IRSp53/PSD-95 interaction perturbs synaptic enrichment of IRSp53 in mouse cortical neurons. The reconstituted PSD condensates promote bundled actin filament formation both in solution and on membranes, via IRSp53-mediated actin binding and bundling. Overexpression of mutants that perturb IRSp53-actin interaction leads to defects in synaptic maturation of cortical neurons. Together, our studies provide potential mechanistic insights into the physiological roles of IRSp53 in synapse formation and function.


Assuntos
Actinas , Proteínas do Tecido Nervoso , Densidade Pós-Sináptica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Pseudópodes/genética , Pseudópodes/metabolismo , Sinapses/genética , Sinapses/metabolismo
8.
Mol Neurodegener ; 17(1): 32, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35501917

RESUMO

BACKGROUND: Genetic variation at the PTK2B locus encoding the protein Pyk2 influences Alzheimer's disease risk. Neurons express Pyk2 and the protein is required for Amyloid-ß (Aß) peptide driven deficits of synaptic function and memory in mouse models, but Pyk2 deletion has minimal effect on neuro-inflammation. Previous in vitro data suggested that Pyk2 activity might enhance GSK3ß-dependent Tau phosphorylation and be required for tauopathy. Here, we examine the influence of Pyk2 on Tau phosphorylation and associated pathology. METHODS: The effect of Pyk2 on Tau phosphorylation was examined in cultured Hek cells through protein over-expression and in iPSC-derived human neurons through pharmacological Pyk2 inhibition. PS19 mice overexpressing the P301S mutant of human Tau were employed as an in vivo model of tauopathy. Phenotypes of PS19 mice with a targeted deletion of Pyk2 expression were compared with PS19 mice with intact Pyk2 expression. Phenotypes examined included Tau phosphorylation, Tau accumulation, synapse loss, gliosis, proteomic profiling and behavior. RESULTS: Over-expression experiments from Hek293T cells indicated that Pyk2 contributed to Tau phosphorylation, while iPSC-derived human neuronal cultures with endogenous protein levels supported the opposite conclusion. In vivo, multiple phenotypes of PS19 were exacerbated by Pyk2 deletion. In Pyk2-null PS19 mice, Tau phosphorylation and accumulation increased, mouse survival decreased, spatial memory was impaired and hippocampal C1q deposition increased relative to PS19 littermate controls. Proteomic profiles of Pyk2-null mouse brain revealed that several protein kinases known to interact with Tau are regulated by Pyk2. Endogenous Pyk2 suppresses LKB1 and p38 MAPK activity, validating one potential pathway contributing to increased Tau pathology. CONCLUSIONS: The absence of Pyk2 results in greater mutant Tau-dependent phenotypes in PS19 mice, in part via increased LKB1 and MAPK activity. These data suggest that in AD, while Pyk2 activity mediates Aß-driven deficits, Pyk2 suppresses Tau-related phenotypes.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Quinase 2 de Adesão Focal/genética , Quinase 2 de Adesão Focal/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Fosforilação , Proteômica , Tauopatias/metabolismo , Proteínas tau/metabolismo
9.
Commun Biol ; 4(1): 1138, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588597

RESUMO

Many synaptic adhesion molecules positively regulate synapse development and function, but relatively little is known about negative regulation. SALM4/Lrfn3 (synaptic adhesion-like molecule 4/leucine rich repeat and fibronectin type III domain containing 3) inhibits synapse development by suppressing other SALM family proteins, but whether SALM4 also inhibits synaptic function and specific behaviors remains unclear. Here we show that SALM4-knockout (Lrfn3-/-) male mice display enhanced contextual fear memory consolidation (7-day post-training) but not acquisition or 1-day retention, and exhibit normal cued fear, spatial, and object-recognition memory. The Lrfn3-/- hippocampus show increased currents of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors (GluN2B-NMDARs), but not α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors (AMPARs), which requires the presynaptic receptor tyrosine phosphatase PTPσ. Chronic treatment of Lrfn3-/- mice with fluoxetine, a selective serotonin reuptake inhibitor used to treat excessive fear memory that directly inhibits GluN2B-NMDARs, normalizes NMDAR function and contextual fear memory consolidation in Lrfn3-/- mice, although the GluN2B-specific NMDAR antagonist ifenprodil was not sufficient to reverse the enhanced fear memory consolidation. These results suggest that SALM4 suppresses excessive GluN2B-NMDAR (not AMPAR) function and fear memory consolidation (not acquisition).


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Medo/fisiologia , Consolidação da Memória/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Camundongos , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Nat Commun ; 12(1): 5116, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433814

RESUMO

NMDA receptor (NMDAR) and GABA neuronal dysfunctions are observed in animal models of autism spectrum disorders, but how these dysfunctions impair social cognition and behavior remains unclear. We report here that NMDARs in cortical parvalbumin (Pv)-positive interneurons cooperate with gap junctions to promote high-frequency (>80 Hz) Pv neuronal burst firing and social cognition. Shank2-/- mice, displaying improved sociability upon NMDAR activation, show impaired cortical social representation and inhibitory neuronal burst firing. Cortical Shank2-/- Pv neurons show decreased NMDAR activity, which suppresses the cooperation between NMDARs and gap junctions (GJs) for normal burst firing. Shank2-/- Pv neurons show compensatory increases in GJ activity that are not sufficient for social rescue. However, optogenetic boosting of Pv neuronal bursts, requiring GJs, rescues cortical social cognition in Shank2-/- mice, similar to the NMDAR-dependent social rescue. Therefore, NMDARs and gap junctions cooperate to promote cortical Pv neuronal bursts and social cognition.


Assuntos
Junções Comunicantes/metabolismo , Interneurônios/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Cognição Social , Sinapses/fisiologia , Animais , Junções Comunicantes/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Parvalbuminas/genética , Parvalbuminas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Comportamento Social , Sinapses/genética
11.
Nat Commun ; 12(1): 3741, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145296

RESUMO

Despite technological advances in biomolecule detections, evaluation of molecular interactions via potentiometric devices under ion-enriched solutions has remained a long-standing problem. To avoid severe performance degradation of bioelectronics by ionic screening effects, we cover probe surfaces of field effect transistors with a single film of the supported lipid bilayer, and realize respectable potentiometric signals from receptor-ligand bindings irrespective of ionic strength of bulky solutions by placing an ion-free water layer underneath the supported lipid bilayer. High-energy X-ray reflectometry together with the circuit analysis and molecular dynamics simulation discovered biochemical findings that effective electrical signals dominantly originated from the sub-nanoscale conformational change of lipids in the course of receptor-ligand bindings. Beyond thorough analysis on the underlying mechanism at the molecular level, the proposed supported lipid bilayer-field effect transistor platform ensures the world-record level of sensitivity in molecular detection with excellent reproducibility regardless of molecular charges and environmental ionic conditions.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Bicamadas Lipídicas/química , Potenciometria/instrumentação , Potenciometria/métodos , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Simulação de Dinâmica Molecular , Concentração Osmolar , Transistores Eletrônicos
12.
Nat Commun ; 12(1): 2695, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976205

RESUMO

mTOR signaling, involving mTORC1 and mTORC2 complexes, critically regulates neural development and is implicated in various brain disorders. However, we do not fully understand all of the upstream signaling components that can regulate mTOR signaling, especially in neurons. Here, we show a direct, regulated inhibition of mTOR by Tanc2, an adaptor/scaffolding protein with strong neurodevelopmental and psychiatric implications. While Tanc2-null mice show embryonic lethality, Tanc2-haploinsufficient mice survive but display mTORC1/2 hyperactivity accompanying synaptic and behavioral deficits reversed by mTOR-inhibiting rapamycin. Tanc2 interacts with and inhibits mTOR, which is suppressed by mTOR-activating serum or ketamine, a fast-acting antidepressant. Tanc2 and Deptor, also known to inhibit mTORC1/2 minimally affecting neurodevelopment, distinctly inhibit mTOR in early- and late-stage neurons. Lastly, Tanc2 inhibits mTORC1/2 in human neural progenitor cells and neurons. In summary, our findings show that Tanc2 is a mTORC1/2 inhibitor affecting neurodevelopment.


Assuntos
Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Células Cultivadas , Células HEK293 , Humanos , Imunossupressores/farmacologia , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/fisiopatologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/genética , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Proteínas/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
13.
EMBO Mol Med ; 13(2): e12632, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33428810

RESUMO

Glycine transporters (GlyT1 and GlyT2) that regulate levels of brain glycine, an inhibitory neurotransmitter with co-agonist activity for NMDA receptors (NMDARs), have been considered to be important targets for the treatment of brain disorders with suppressed NMDAR function such as schizophrenia. However, it remains unclear whether other amino acid transporters expressed in the brain can also regulate brain glycine levels and NMDAR function. Here, we report that SLC6A20A, an amino acid transporter known to transport proline based on in vitro data but is understudied in the brain, regulates proline and glycine levels and NMDAR function in the mouse brain. SLC6A20A transcript and protein levels were abnormally increased in mice carrying a mutant PTEN protein lacking the C terminus through enhanced ß-catenin binding to the Slc6a20a gene. These mice displayed reduced extracellular levels of brain proline and glycine and decreased NMDAR currents. Elevating glycine levels back to normal ranges by antisense oligonucleotide-induced SLC6A20 knockdown, or the competitive GlyT1 antagonist sarcosine, normalized NMDAR currents and repetitive climbing behavior observed in these mice. Conversely, mice lacking SLC6A20A displayed increased extracellular glycine levels and NMDAR currents. Lastly, both mouse and human SLC6A20 proteins mediated proline and glycine transports, and SLC6A20 proteins could be detected in human neurons. These results suggest that SLC6A20 regulates proline and glycine homeostasis in the brain and that SLC6A20 inhibition has therapeutic potential for brain disorders involving NMDAR hypofunction.


Assuntos
Glicina , Receptores de N-Metil-D-Aspartato , Animais , Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Homeostase , Proteínas de Membrana Transportadoras , Camundongos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
14.
EMBO J ; 39(11): e104150, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32347567

RESUMO

Alternative splicing regulates trans-synaptic adhesions and synapse development, but supporting in vivo evidence is limited. PTPδ, a receptor tyrosine phosphatase adhering to multiple synaptic adhesion molecules, is associated with various neuropsychiatric disorders; however, its in vivo functions remain unclear. Here, we show that PTPδ is mainly present at excitatory presynaptic sites by endogenous PTPδ tagging. Global PTPδ deletion in mice leads to input-specific decreases in excitatory synapse development and strength. This involves tyrosine dephosphorylation and synaptic loss of IL1RAPL1, a postsynaptic partner of PTPδ requiring the PTPδ-meA splice insert for binding. Importantly, PTPδ-mutant mice lacking the PTPδ-meA insert, and thus lacking the PTPδ interaction with IL1RAPL1 but not other postsynaptic partners, recapitulate biochemical and synaptic phenotypes of global PTPδ-mutant mice. Behaviorally, both global and meA-specific PTPδ-mutant mice display abnormal sleep behavior and non-REM rhythms. Therefore, alternative splicing in PTPδ regulates excitatory synapse development and sleep by modulating a specific trans-synaptic adhesion.


Assuntos
Proteína Acessória do Receptor de Interleucina-1/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Fases do Sono , Sinapses/metabolismo , Animais , Proteína Acessória do Receptor de Interleucina-1/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Tirosina Fosfatases/genética , Sinapses/genética
15.
Elife ; 92020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142410

RESUMO

Synaptic adhesion molecules regulate synapse development and function. However, whether and how presynaptic adhesion molecules regulate postsynaptic NMDAR function remains largely unclear. Presynaptic LAR family receptor tyrosine phosphatases (LAR-RPTPs) regulate synapse development through mechanisms that include trans-synaptic adhesion; however, whether they regulate postsynaptic receptor functions remains unknown. Here we report that presynaptic PTPσ, a LAR-RPTP, enhances postsynaptic NMDA receptor (NMDAR) currents and NMDAR-dependent synaptic plasticity in the hippocampus. This regulation does not involve trans-synaptic adhesions of PTPσ, suggesting that the cytoplasmic domains of PTPσ, known to have tyrosine phosphatase activity and mediate protein-protein interactions, are important. In line with this, phosphotyrosine levels of presynaptic proteins, including neurexin-1, are strongly increased in PTPσ-mutant mice. Behaviorally, PTPσ-dependent NMDAR regulation is important for social and reward-related novelty recognition. These results suggest that presynaptic PTPσ regulates postsynaptic NMDAR function through trans-synaptic and direct adhesion-independent mechanisms and novelty recognition in social and reward contexts.


Assuntos
Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Animais , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Transgênicos , Neuroimagem , Teste de Campo Aberto , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Receptores de N-Metil-D-Aspartato/genética , Transmissão Sináptica/fisiologia
16.
EMBO Mol Med ; 11(8): e10409, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31282614

RESUMO

Mitophagy can selectively remove damaged toxic mitochondria, protecting a cell from apoptosis. The molecular spatial-temporal mechanisms governing autophagosomal selection of reactive oxygen species (ROS)-damaged mitochondria, particularly in a platelet (no genomic DNA for transcriptional regulation), remain unclear. We now report that the mitochondrial matrix protein MsrB2 plays an important role in switching on mitophagy by reducing Parkin methionine oxidation (MetO), and transducing mitophagy through ubiquitination by Parkin and interacting with LC3. This biochemical signaling only occurs at damaged mitochondria where MsrB2 is released from the mitochondrial matrix. MsrB2 platelet-specific knockout and in vivo peptide inhibition of the MsrB2/LC3 interaction lead to reduced mitophagy and increased platelet apoptosis. Pathophysiological importance is highlighted in human subjects, where increased MsrB2 expression in diabetes mellitus leads to increased platelet mitophagy, and in platelets from Parkinson's disease patients, where reduced MsrB2 expression is associated with reduced mitophagy. Moreover, Parkin mutations at Met192 are associated with Parkinson's disease, highlighting the structural sensitivity at the Met192 position. Release of the enzyme MsrB2 from damaged mitochondria, initiating autophagosome formation, represents a novel regulatory mechanism for oxidative stress-induced mitophagy.


Assuntos
Plaquetas/enzimologia , Metionina Sulfóxido Redutases/sangue , Proteínas dos Microfilamentos/sangue , Mitocôndrias/enzimologia , Mitofagia , Animais , Plaquetas/patologia , Linhagem Celular , Diabetes Mellitus/sangue , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Feminino , Humanos , Metionina Sulfóxido Redutases/deficiência , Metionina Sulfóxido Redutases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/sangue , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Mutação , Oxirredução , Estresse Oxidativo , Doença de Parkinson/sangue , Doença de Parkinson/genética , Doença de Parkinson/patologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/sangue , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
17.
PLoS Biol ; 17(6): e2005326, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31166939

RESUMO

Netrin-G ligand-3 (NGL-3) is a postsynaptic adhesion molecule known to directly interact with the excitatory postsynaptic scaffolding protein postsynaptic density-95 (PSD-95) and trans-synaptically with leukocyte common antigen-related (LAR) family receptor tyrosine phosphatases to regulate presynaptic differentiation. Although NGL-3 has been implicated in the regulation of excitatory synapse development by in vitro studies, whether it regulates synapse development or function, or any other features of brain development and function, is not known. Here, we report that mice lacking NGL-3 (Ngl3-/- mice) show markedly suppressed normal brain development and postnatal survival and growth. A change of the genetic background of mice from pure to hybrid minimized these developmental effects but modestly suppressed N-methyl-D-aspartate (NMDA) receptor (NMDAR)-mediated synaptic transmission in the hippocampus without affecting synapse development, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)-mediated basal transmission, and presynaptic release. Intriguingly, long-term depression (LTD) was near-completely abolished in Ngl3-/- mice, and the Akt/glycogen synthase kinase 3ß (GSK3ß) signaling pathway, known to suppress LTD, was abnormally enhanced. In addition, pharmacological inhibition of Akt, but not activation of NMDARs, normalized the suppressed LTD in Ngl3-/- mice, suggesting that Akt hyperactivity suppresses LTD. Ngl3-/- mice displayed several behavioral abnormalities, including hyperactivity, anxiolytic-like behavior, impaired spatial memory, and enhanced seizure susceptibility. Among them, the hyperactivity was rapidly improved by pharmacological NMDAR activation. These results suggest that NGL-3 regulates brain development, Akt/GSK3ß signaling, LTD, and locomotive and cognitive behaviors.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Proteínas Ligadas por GPI/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Encéfalo/metabolismo , Proteínas Ligadas por GPI/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Ligantes , Depressão Sináptica de Longo Prazo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Netrinas/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica
18.
J Biol Chem ; 294(15): 6042-6053, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30787106

RESUMO

Oligomeric assemblies of amyloid-ß (Aß) peptide (Aßo) in the brains of individuals with Alzheimer's disease (AD) are toxic to neuronal synapses. More than a dozen Aß receptor candidates have been suggested to be responsible for various aspects of the molecular pathology and memory impairment in mouse models of AD. A lack of consistent experimental design among previous studies of different receptor candidates limits evaluation of the relative roles of these candidates, producing some controversy within the field. Here, using cell-based assays with several Aß species, including Aßo from AD brains obtained by autopsy, we directly compared the Aß-binding capacity of multiple receptor candidates while accounting for variation in expression and confirming cell surface expression. In a survey of 15 reported Aß receptors, only cellular prion protein (PrPC), Nogo receptor 1 (NgR1), and leukocyte immunoglobulin-like receptor subfamily B member 2 (LilrB2) exhibited direct binding to synaptotoxic assemblies of synthetic Aß. Both PrPC and NgR1 preferentially bound synaptotoxic oligomers rather than nontoxic monomers, and the method of oligomer preparation did not significantly alter our binding results. Hippocampal neurons lacking both NgR1 and LilrB2 exhibited a partial reduction of Aßo binding, but this reduction was lower than in neurons lacking PrPC under the same conditions. Finally, binding studies with soluble Aßo from human AD brains revealed a strong affinity for PrPC, weak affinity for NgR1, and no detectable affinity for LilrB2. These findings clarify the relative contributions of previously reported Aß receptors under controlled conditions and highlight the prominence of PrPC as an Aß-binding site.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptor Nogo 1/metabolismo , Proteínas PrPC/metabolismo , Receptores Imunológicos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Receptor Nogo 1/genética , Proteínas PrPC/genética , Receptores Imunológicos/genética
19.
Cell Rep ; 26(1): 145-158.e8, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605671

RESUMO

Cellular prion protein (PrPC) binds the scrapie conformation of PrP (PrPSc) and oligomeric ß-amyloid peptide (Aßo) to mediate transmissible spongiform encephalopathy (TSE) and Alzheimer's disease (AD), respectively. We conducted cellular and biochemical screens for compounds blocking PrPC interaction with Aßo. A polymeric degradant of an antibiotic targets Aßo binding sites on PrPC with low nanomolar affinity and prevents Aßo-induced pathophysiology. We then identified a range of negatively charged polymers with specific PrPC affinity in the low to sub-nanomolar range, from both biological (melanin) and synthetic (poly [4-styrenesulfonic acid-co-maleic acid], PSCMA) origin. Association of PSCMA with PrPC prevents Aßo/PrPC-hydrogel formation, blocks Aßo binding to neurons, and abrogates PrPSc production by ScN2a cells. We show that oral PSCMA yields effective brain concentrations and rescues APPswe/PS1ΔE9 transgenic mice from AD-related synapse loss and memory deficits. Thus, an orally active PrPC-directed polymeric agent provides a potential therapeutic approach to address neurodegeneration in AD and TSE.


Assuntos
Doença de Alzheimer/fisiopatologia , Proteínas Priônicas/antagonistas & inibidores , Animais , Camundongos , Camundongos Transgênicos , Transdução de Sinais
20.
J Neurosci ; 39(10): 1910-1929, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30626696

RESUMO

The intracellular tyrosine kinase Pyk2 (PTK2B) is related to focal adhesion kinase and localizes to postsynaptic sites in brain. Pyk2 genetic variation contributes to late onset Alzheimer's disease (AD) risk. We recently observed that Pyk2 is required for synapse loss and for learning deficits in a transgenic mouse model of AD. Here, we explore the cellular and biochemical basis for the action of Pyk2 tyrosine kinase in amyloid-ß oligomer (Aßo)-induced dendritic spine loss. Overexpression of Pyk2 reduces dendritic spine density of hippocampal neurons by a kinase-dependent mechanism. Biochemical isolation of Pyk2-interacting proteins from brain identifies Graf1c, a RhoA GTPase-activating protein inhibited by Pyk2. Aßo-induced reductions in dendritic spine motility and chronic spine loss require both Pyk2 kinase and RhoA activation. Thus, Pyk2 functions at postsynaptic sites to modulate F-actin control by RhoA and regulate synapse maintenance of relevance to AD risk.SIGNIFICANCE STATEMENT Genetic variation at the Pyk2 locus is a risk for Alzheimer's disease. We have observed that Pyk2 is required for AD transgenic synapse loss and memory dysfunction. However, the cellular and biochemical basis for Pyk2 function related to AD is not defined. Here, we show that brain Pyk2 interacts with the RhoGAP protein Graf1 to alter dendritic spine stability via RhoA GTPase. Amyloid-ß oligomer-induced dendritic spine loss requires the Pyk2/Graf1 pathway.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Espinhas Dendríticas/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Hipocampo/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Feminino , Quinase 2 de Adesão Focal/genética , Células HEK293 , Hipocampo/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA